Микроскопия - методы контраста

1. Cветлое поле

Метод светлого поля в проходящем свете применяется при исследовании прозрачных препаратов, у которых различные участки структуры по-разному поглощают свет (тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и другие).
Пучок лучей из осветительной системы проходит препарат и объектив и дает равномерно освещенное поле в плоскости изображения. Элементы структуры препарата частично поглощают и отклоняют падающий на них свет, что и обусловливает появление изображения.

Метод может быть полезен и при наблюдении непоглащающих объектов, но лишь в том случае, если они рассеивают освещающий пучок настолько сильно, что значительная часть его не попадает в объектив.
Метод светлого поля в отраженном свете применяется для наблюдения непрозрачных объектов, к примеру, травленых шлифов металлов, биологических тканей и различных минералов. Освещение препарата производится сверху, через объектив, который одновременно выполняет и роль осветительной системы.
Изображение, как и при проходящем свете, создается за счет того, что разные участки препарата неодинаково отклоняют падающий на них свет, а отраженные лучи имеют различную интенсивность.

2. Темное поле

Темнопольная микроскопия основана на способности микроорганизмов сильно рассеивать свет. Для темнопольнои микроскопии пользуются обычными объективами и специальными темнопольными конденсорами.
Основная особенность темнопольных конденсоров заключается в том, что центральная часть у них затемнена и прямые лучи от осветителя в объектив микроскопа не попадают. Объект освещается косыми боковыми лучами и в объектив микроскопа попадают только лучи, рассеянные частицами, находящимися в препарате. Темнопольная микроскопия основана на эффекте Тиндаля, известным примером которого служит обнаружение пылинок в воздухе при освещении их узким лучом солнечного света.
Чтобы в объектив не попадали прямые лучи от осветителя, апертура объектива должна быть меньше, чем апертура конденсора. Для уменьшения апертуры в обычный объектив помещают диафрагму или пользуются специальными объективами, снабженными ирисовой диафрагмой.
При темнопольной микроскопии микроорганизмы выглядят ярко светящимися на черном фоне. При этом способе микроскопии могут быть обнаружены мельчайшие микроорганизмы, размеры которых лежат за пределами разрешающей способности микроскопа. Однако темнопольная микроскопия позволяет увидеть только контуры объекта, но не дает возможности изучить внутреннюю структуру. С помощью темнопольнои микроскопии изучают препараты типа раздавленная "капля". Предметные стекла должны быть не толще 1,1-1,2 мм, покровные 0,17 мм, без царапин и загрязнений.
При приготовлении препарата следует избегать наличия пузырьков и крупных частиц (эти дефекты будут видны ярко святящимися и не позволят наблюдать препарат). Для темнопольной применяют более мощные осветители и максимальный накал лампы.
Настройка темнопольного освещения в основном заключается в следующем:
1) устанавливают свет по Келеру;
2) заменяют светлопольный конденсор темнопольным;
3) на верхнюю линзу конденсора наносят иммерсионное масло или дистиллированную воду;
4) поднимают конденсор до соприкосновения с нижней поверхностью предметного стекла;
5) объектив малого увеличения фокусируют на препарат;
6) с помощью центрировочных винтов переводят в центр поля зрения светлое пятно (иногда имеющее затемненный центральный участок);
7) поднимая и опуская конденсор, добиваются исчезновения затемненного центрального участка и получения равномерно освещенного светлого пятна.
Если этого сделать не удается, то надо проверить толщину предметного стекла (обычно такое явление наблюдается при использовании слишком толстых предметных стекол - конус света фокусируется в толще стекла).
После правильной настройки света устанавливают объектив нужного увеличения и исследуют препарат.

3. Поляризация

Метод исследования в поляризованных лучах применяется в проходящем и в отраженном свете для так называемых анизотропных объектов, обладающих двойным луче преломлением или отражением.
Такими объектами являются многие минералы, угли, некоторые животные и растительные ткани и клетки, искусственные и естественные волокна. При исследовании анизотропных препаратов к обычной схеме микроскопа перед осветительной системой добавляют поляризатор, а после объектива - анализатор, находящиеся в скрещенном либо параллельном положении относительно друг друга.
При скрещенных поляризаторе и анализаторе в темном поле зрения микроскопа видны темные, светлые или окрашенные анизотропные элементы объекта. Вид этих элементов зависит от положения объекта относительно плоскости поляризации и от величины двойного лучепреломления.
Более точное определение оптических данных объекта делается с помощью различных компенсаторов (неподвижных кристаллических пластинок, подвижных клиньев и пластинок).

4. Фазовый контраст

При микроскопии неокрашенных микроорганизмов, отличающихся от окружающей среды только по показателю преломления, изменения интенсивности света (амплитуды) не происходит, а изменяется только фаза прошедших световых волн. Поэтому глаз этих изменений заметить не может и наблюдаемые объекты выглядят малоконтрастными, прозрачными.
Для наблюдения таких объектов используют фазово-контрастную микроскопию, основанную на превращении невидимых фазовых изменений, вносимых объектом, в амплитудные, различимые глазом.
Фазово-контрастное устройство может быть установлено на любом световом микроскопе и состоит из:
1) набора объективов со специальными фазовым пластинками;
2) конденсора с поворачивающимся диском. В нем установлены кольцевые диафрагмы, соответствующие фазовым пластинкам в каждом из объективов;
3) вспомогательного телескопа для настройки фазового контраста.
Настройка фазового контраста заключается в следующем:
1) заменяют объективы и конденсор микроскопа на фазовые (обозначенные буквами Ph) ;
2) устанавливают объектив малого увеличения. Отверстие в диске конденсора должно быть без кольцевой диафрагмы (обозначенной цифрой "0");
3) настраивают свет по Келеру;
4) выбирают фазовый объектив соответствующего увеличения и фокусируют его на препарат;
5) поворачивают диск конденсора и устанавливают соответствующую объективу кольцевую диафрагму;
6) вынимают из тубуса окуляр и вставляют на его место вспомогательный телескоп. Настраивают его так, чтобы были резко видны фазовая пластинка (в виде темного кольца) и кольцевая диафрагма (в виде светлого кольца того же диаметра). С помощью регулировочных винтов на конденсоре совмещают эти кольца. Вынимают вспомогательный телескоп и вновь устанавливают окуляр.
Благодаря применению этого способа микроскопии контраст живых неокрашенных микроорганизмов резко увеличивается и они выглядят темными на светлом фоне (позитивный фазовый контраст) или светлыми на темном фоне (негативный фазовый контраст).
Фазово-контрастная микроскопия применяется также для изучения клеток культуры ткани, наблюдения действия различных вирусов на клетки и т. п. В этих случаях часто применяют биологические микроскопы с обратным расположением оптики - инвертированные микроскопы. У таких микроскопов объективы расположены снизу, а конденсор - сверху.

5. Флуоресценция (люминесценция)

Флуоресцентная (люминесцентная) микроскопия основана на способности некоторых веществ люминесцировать, т. е. светиться при освещении невидимым ультрафиолетовым или синим светом. Цвет люминесценции смещен в более длинноволновую часть спектра по сравнению с возбуждающим ее светом (правило Стокса).
При возбуждении люминесценции синим светом цвет ее может быть от зеленого до красного, если люминесценция возбуждается ультрафиолетовым излучением, то свечение может быть в любой части видимого спектра. Эта особенность люминесценции позволяет, используя специальные светофильтры, поглощающие возбуждающий свет, наблюдать сравнительно слабое люминесцентное свечение.
Устройство флуоресцентного микроскопа и правила работы с ним отличаются от обычного светового микроскопа в основном следующим:
1. Наличие мощного источника света в осветителе, излучающего преимущественно в коротковолновой (ультрафиолетовой, синей) части спектра (ртутно-кварцевая лампа или галогенная кварцевая лампа).
2. Наличие системы светофильтров:
• возбуждающие светофильтры пропускают только ту часть спектра, которая возбуждает люминесценцию;
• теплозащитный светофильтр защищает от перегрева другие светофильтры, препарат и оптику флуоресцентного микроскопа;
• "запирающие" светофильтры расположены между окуляром. Эти светофильтры поглощают возбуждающее излучение и пропускают свет люминесценции от препарата к глазу наблюдателя.
Способ освещения препаратов для возбуждения люминесценции заключается в том, что препарат освещают светом, падающим на него через объектив. Благодаря этому освещенность увеличивается при использовании объектов, имеющих большую числовую апертуру, т. е. тех, которые используются для изучения микроорганизмов.
Важную роль при этом способе освещения играет специальная интерференционная светоделительная пластинка, направляющая свет в объектив. Она представляет собой полупрозрачное зеркало, которое избирательно отражает и направляет в объектив часть спектра, которая возбуждает люминесценцию, а пропускает в окуляр свет люминесценции.
Оптика объективов флуоресцентного микроскопа изготавливается из нелюминесцирующих сортов оптического стекла и склеивается специальным нелюминесцирующим клеем. При работе с объективами масляной иммерсии используется нелюминесцирующее иммерсионное масло.
Поскольку большинство микроорганизмов не обладают собственной люминесценцией существует несколько способов их обработки для наблюдения в флуоресцентном микроскопе. Прежде всего, это флуорохромирование - окрашивание сильно разведенными (до нескольких микрограмм/мл) растворами флуоресцирующих красителей (флуорохромов). Флуоресцентная микроскопия по сравнению с обычной позволяет:
• сочетать цветное изображение и контрастность объектов;
• изучать морфологию живых и мертвых клеток микроорганизмов в питательных средах и тканях животных и растений;
• исследовать клеточные микроструктуры, избирательно поглощающие различные флуорохромы, являющиеся при этом специфическими цитохимическими индикаторами;
• определять функционально-морфологические изменения клеток;
• использовать флуорохромы при иммунологических реакциях и подсчете бактерий в образцах с невысоким их содержанием.

6. Хоффмановский контраст

Хоффмановский контраст (ХК) представляет собой метод косого освещения, повышающий контраст в окрашенных и неокрашенных препаратах за счет образования градиента оптических фаз. ХК пoзвoляeт нaблюдaть тpexмepнoe изoбpaжeниe живыx oбpaзцoв в плacтикoвыx чaшкax c выcoкoй чeткocтью, чтo дaeт pacшиpeнныe вoзмoжнocти для peшeния нaучныx и cпeциaльныx мeдицинcкиx зaдaч. За счет использования бoльшиих paбoчих paccтoяний и выcoких чиcлoвых aпepтуp метод позволяет тoчнo oтcлeживaть движeние в пoлe зpeния, нaпpимep, пpи проведении микроманипуляций.



Дpугиe иccлeдoвaния - тaкиe, кaк элeктpoфизиoлoгия, вспомогательные репродуктивные технологии и ЭКО - тpeбуют нe тoлькo кoндeнcopoв, нo и oбъeктивoв c бoльшим paбoчим paccтoяниeм. При иccлeдoвaнии тoлcтыx oбpaзцoв ХК пoмoгaeт peшить зaдaчу пocлoйнoгo изучeния oбpaзцa путeм выбopa пocлeдoвaтeльнocти фoкaльныx плaнoв. Пpи этoм кaждый вepxний фoкaльный плaн нe нeceт инфopмaции о нижeлeжaщeм плaне.
ХК мoжeт быть пpимeнeн нa микpocкoпe c флуopecцeнтным ocвeтитeлeм. Изучeниe мopфoлoгии c пpимeнeниeм флуopecцeнции или бeз тaкoвoй вoзмoжнo бeз cмeны oбъeктивoв и oбpaзцa. Стоит отметить преимущество Хоффмановского контраста по сравнению с Фазовым контрастом.
Известно, что Фaзoвoму кoнтpacту пpиcущ эффeкт Гaлo - появление светящегося ореола по контуру изображения объекта. B peзультaтe Bы мoжeтe пoтepять вaжную инфopмaцию. XК нe дaeт Гaлo, чтo пoзвoляeт лeгкo oпpeдeлять cвoйcтвa кpaeвыx cтpуктуp, нaпpимep, тoчнo зaмepять углы или расстояния.

7. ДИК (дифференциально-интерференционный контраст)

ДИК (дифференциально-интерференционный контраст) - является прекрасным механизмом для создания контраста в прозрачных препаратах. Микроскопия с ДИК представляет собой интерференционную систему с расщеплением пучка света, при которой контрольный пучок отклоняется на небольшое расстояние, обычно меньшее, чем диаметр дифракционного кружка.
С помощью данного метода получается монохроматическое оттененное изображение, которое отображает градиент оптических путей как высоко-, так и низкопространственных частот, присутствующих в препарате.
Те участки препарата, при прохождении через которые оптические пути удлиняются по отношению к контрольному пучку, выглядят ярче или темнее, тогда как участки, между которыми различия меньше, обладают противоположным контрастом.
Чем круче становится градиент оптических пучков, тем резче контраст изображения


Ваш заказ будет обработан
в ближайшее время.
Мы пришлем уведомление, как только все будет готово. Спасибо!