Микроклональное размножение растений

16.07.2024
Микроклональным размножением называется процесс выращивания in vitro на специальных питательных средах новых полноценных дочерних растений из частей растения-донора, которые в дальнейшем адаптируют к нативным климатическим условиям

Микроклональным размножением называется процесс выращивания in vitro на специальных питательных средах новых полноценных дочерних растений из частей растения-донора, которые в дальнейшем адаптируют к нативным климатическим условиям. Это становится возможным благодаря способности растений размножаться бесполым путем. При вегетативном размножении дочерняя особь полностью идентична материнскому организму (является ее клоном), полностью сохраняет генетическую информацию от материнского растения, так как образуется из ее соматической клетки. Но одно из существенных затруднений вегетативного размножения — сложность получения большого количества сортового растения или сложность приживаемости некоторых растений (например, древесных или взрослых растений), а также накопление во взрослом растении патогенов (вирусов, грибов и т.п.), которые переносятся в дочерний организм во время деления.

Поэтому биотехнологами был разработан быстрый и удобный метод — микроклональное размножение растений, который из чисто научного подхода уже превратился в коммерческий метод получения большого количества сортовых и трудноприживаемых растений.

В микроразмножении растений используется как каллусная* ткань с последующим органогенезом, так и меристематическая** ткань.

  • *каллус — в биотехнологии называют массу недифференцированных клеток, они являются тотипотентными и поэтому из каждой такой клетки способен развиться целый организм;
  • *меристема — общее название быстро делящихся и физиологически активных клеток, которые отвечают за наращивание массы и способны дать развитие специализированным тканям растений.

Преимущества микроразмножения по сравнению с традиционными путями получения генетически идентичных особей:

  • получение генетически однородного материала;
  • снижение титр-вируса в культуре;
  • высокий выход получения клонов (увеличение числа клонов и в будущем выросших растений;
  • размножение растений, сложноразмножаемых растений (хвойные);
  • проведение опытов в продолжении 365 дней;
  • поддержание гетерозисных гибридов для избежания расщепления во время скрещивания растений;
  • для сохранения редких и исчезающих видов растений (например, женьшеня на Дальнем востоке);
  • в селекции поддержание некоторых отдельных генотипов.

Микроклональное размножение в большинстве случаев идет в 3 последовательные стадии:

  • получение растительной культуры;
  • увеличение количества пропагул***;
  • подготовка микроклонов к условиям ex vitro.

*** пропагулы — в общем смысле слова это органы растения, способные дать в будущем целую популяцию.

Получение растительной культуры помимо подготовки маточных растений с целью снижения содержания патогенных микроорганизмов включает в себя стерилизацию растительного материала и перенос на питательные среды. Задача этой стадии — получение жизнеспособных эксплантов, у которых снижена вирусная нагрузка.

Питательные среды для микроклонирования растений

Ученые предпочитают использовать среду Мурасиге-Скуга (MS) в различных модификациях. Она показывает хороший результат при каллусообразовании у многих растений, позволяет оптимально поддерживать неорганизованный каллусный рост и вызывает индукцию морфогенеза у двудольных. Для культивирования бобовых, злаков можно использовать среду Гамборга В5, для укоренения побегов — среду Уайта, среда Нича — для морфогенеза злаков.

Любая среда имеет гетерогенный состав, содержит микро- и макроэлементы, является источником углерода (из сахарозы и глюкозы), которые во время стерилизации среды распадаются до легкоусвояемых моносахаридов, в среду добавляют витамины (пиридоксин, аскорбиновую и пантотеновую кислоты, тиамин, рибофлавин, биотин), иногда добавляют антиоксиданты (глутатион, ДТТ) и регуляторы роста.

Гелеобразующие вещества — используются как уплотняющий компонент твердых питательных сред. Агар для микроклонирования проходит строгий контроль, обладает высокой прочностью геля, что позволяет использовать низкие концентрации (0,4-0,6 %), имеет низкую мутность для визуализации процесса роста корней в среде, плавится при температуре 85 ± 5 С и затвердевает при температуре 35 ± 5 С. Твердые питательные среды дают большую опору для развивающегося растения, но иногда питательные вещества в такой среде распределены неравномерно, иногда исследователи используют комбинированные среды, например нижний слой твердый, а верхний жидкий.

Регуляторы роста — фитогормоны (phytos — растения + гормоны) выполняют в жизненном цикле растений координирующие и регулирующие функции. Регулирование морфогенеза при помощи фитогормонов лежит в основе микроразмножения растений.

Цитокинины убирают апикальное доминирование и индуцируют развитие пазушных почек, нарушают покой и стимулируют рост покоящихся органов. Регулируют рост соматических зародышей и формирование растений. Они нужны для дифференциации стеблевых почек в культуре каллусных тканей и при регенерации побегов из клеток экспланта. Кроме того, цитокинины участвуют в замедлении старения органов и повышении их устойчивости к неблагоприятным условиям внешней среды. В микроразмножении в основном используют гибберллин А3 (гибберелловая кислота, ГК3). Экзогенные гиббереллины усиливают рост и вытягивание стебля, листьев, индуцируют прорастание семян, снимают состояние покоя. Под влиянием гиббереллинов удлиняются цветоножки, увеличиваются размеры и количество цветков. ГК3 вносят в питательную среду чаще всего для ускорения роста сформировавшихся почек и получения растения с сильно развитой надземной частью. Самые популярные цитокинины: кинетин, бензиламинопурин, зеатин. Самые популярные ауксины индолилуксусная кислота и нафтилуксусная кислота в концентрации до 0,5 мг/л.

Антибиотики/антимикотики добавляются в среду для стерилизации от возможной внутриорганной инфекции растения.

Тест-наборы для детекции вирусов — используются для контроля за разными типами вирусных болезней растений.

Ауксины оказывают такое влияние на клетки, как растяжение, деление и дифференцировка. Самым выраженным органогенным эффектом ауксинов является стимуляция образования корней.

Полученные микроклоны пересаживаются на новые питательные среды, и этот процесс облегчается использованием пластика для культур растительной ткани

Следующая стадия — это увеличение количества растений, реализуется чаще всего микрочеренкованием. Полученные микроклоны пересаживаются на новые питательные среды, и этот процесс облегчается использованием пластика для культур растительной ткани. Данная посуда позволяет масштабировать эксперимент, при этом не занимая много места, за счет штабелирования или компактной посадки. Помимо этого некоторые модели стерильны или возможно их автоклавирование, что снижает риск загрязнения (контаминации).

Завершающая стадия — адаптация микроклонов к условиям ex vitro. Во время этого этапа происходит открывание культивационных сосудов и прекращение использования стерильных условий. Растения обрабатываются корнеобразователями (ауксины), высаживаются на твердый субстрат и помещаются в условия повышенной влажности. В этот период рекомендуется обрабатывать растения адаптогенами, антиоксидантами и т.п. Для проверки качества почв можно использовать удобные портативные солеизмерители, а так же измерители значения рН почвы и минерального состава.

Микроклонирование в лабораторных условиях — это многоэтапный процесс и каждый этап крайне важен. Для успешного культивирования первостепенное значение имеет чистота! Она обеспечивается как ламинарными шкафами, автоклавами, дистилляторами для получения чистой воды, так и стерильными расходными материалами.

Дополнительным оборудованием для успешного культивирования клонов являются климатические камеры, стеллажи и комнаты роста растений, горелки, мешалки, скальпели.

Информация для заказа:

Пока нет данных. Перейти в каталог
TC1094.25 gm
12 064
12 064 AMD
TC1094.100 gm
19 279
19 279 AMD
TC1094.500 gm
61 230
61 230 AMD
LC-5078.0100
100 г
LC-5078.0100
100 г
4 460
4 460 AMD
LC-5078.0250
250 г
8 921
8 921 AMD
LC-5078.1000
1 кг
41 482
41 482 AMD
LC-5078.5000
5 кг
По запросу
По запросу


CAS-No. 50-81-7
Химическая формула C₆H₈O₆
Молекулярная масса, г/моль 176,13
Квалификация pure EP, USP
Содержание основного вещества, % 99,0-100,5
Растворимость (20°C в воде), г/л 333
Температура плавления, °C 190,2
α20°C/D; 10 % в воде +20,5°-+21,5°
pH (5 % в воде; 20°C) 2,1-2,6
Нерастворимые в воде вещества тест
Примеси (общие), % 0,2
Потери при высушивании, % 0,4
Сульфатная зола, % 0,1
Мышьяк, % 0,0003
Медь, % 0,0005
Железо, % 0,0002
Ртуть, % 0,0001
Условия хранения не выше 25 °С
A4034
100 г
По запросу
По запросу
21210-5G-F
5 г
По запросу
По запросу
1242GR100
транспортировка +2...+8 °C
51 295
51 295 AMD
A-0955,0050
50 г
A-0955,0050
50 г
транспортировка +2...+8 °C
По запросу
По запросу
A-0955,0250
250 г
хранение +2...+8°C
По запросу
По запросу


CAS-No. 67-03-8
Химическая формула C₁₂H₁₇CIN₄OSxHCI
Молекулярная масса, г/моль 337,23
Содержание основного вещества (титр.), % более 99
Растворимость (20 °C, H2O), г/мл 1
Вода, % 5
Свинец (Pb) 0,001
Условия хранения 2 - 8 °C
Индекс риска (R) 36/37/38
Индекс безопасности (S) 22-24/25-37/39-26-36
LC-10078.2
хранение темнота
По запросу
По запросу
1188GR001
1 г
хранение +2...+8°C, транспортировка +4°C
59 770
59 770 AMD


Синонимы: кофермент R, гексагидро-2-оксо-1Н-тиено (3,4-d)имидазол-4-пентановая кислота, витамин Н.
CAS-No. 58-85-5
Молекулярный вес, г/моль 244,31
Содержание основного вещества,% не менее 99
Пирогенный тест пройден
Растворимость (1 % в воде) чистый прозрачный
Специфическое вращение (α20°C/D; 1 %, 0,1 Н NaOH) +89° до +93°
Тяжелые металлы (свинец) не более 0,001
Потери при сушке,% не более 1
Сульфатированная зола,% не более 0,1
024060.100 mg
902
902 AMD
A-0969,0250ф
250 мг
A-0969,0250ф
250 мг
транспортировка +2...+8 °C
По запросу
По запросу
A-0969,0001
1 г
транспортировка -8...+2°C
По запросу
По запросу


CAS-No. 58-85-5
Химическая формула C₁₀H₁₆N₂O₃
Молярный вес г/моль 244,31
Содержание основного вещества, % более или равно 99
Точка плавления, ºС 229-233
Растворимость, г/л, в воде 0,2
Тяжелые металлы (типа Pb), % макс. 0,001
Потери при высушивании, % макс. 1
Условия хранения 2-8 ºС
Индекс риска (R) 20/21/22-36/37/38
Индекс безопасности (S) 24/25-36-26
Merck (Millipore, Sigma-Aldrich, Supelco)
B4501-100MG
100 мг
B4501-100MG
100 мг
транспортировка -8...+2°C
56 946
56 946 AMD
B4501-500MG
500 мг
хранение +2...+8°C
155 972
155 972 AMD
B4501-1G
1 г
транспортировка -8...+2°C
285 712
285 712 AMD
939200.5 gm
хранение +2...+8°C, транспортировка +2...+8 °C
16 503
16 503 AMD
1392GR025
25 г
транспортировка +2...+8 °C
95 025
95 025 AMD


Синонимы: γ-L-Глутамил-L-цистеинилглицин, GSH.
CAS-No. 70–18–8
Химическая формула C₁₀H₁₇N₃O₆S
Молекулярный вес, г/моль 307,33
Содержание основного вещества, % не менее 95,0
Внешний вид белый порошок
Специфическое вращение (α20°C/D; 2 % в воде) -16° до -19°
Растворимость (5 % в воде) чистый, прозрачный
Потери при сушке, % не более 0,5
pH (5 % в воде, 20°C) 5,5–7,0
Тяжелые металлы, % не более 0,0005
R0861
5 г
R0861
5 г
хранение +4°C
111 587
111 587 AMD
R0862
25 г
транспортировка +4°C
421 124
421 124 AMD
D3483123.0001
1 г
D3483123.0001
1 г
транспортировка +2...+8 °C
5 748
5 748 AMD
D3483123.0005
5 г
хранение +2...+8 в темноте, транспортировка +2...+8 в темноте
17 766
17 766 AMD
D3483123.0100
100 г
транспортировка +2...+8 °C
259 680
259 680 AMD
D3483123.0500
500 г
транспортировка +2...+8 в темноте
По запросу
По запросу
D3483123.1000
1 кг
транспортировка -8...+2°C
По запросу
По запросу


Синоним: DTT, реагент Клеланда
Химическая формула C₄H₁₀O₂S₂
Молярная масса 154,25
Внешний вид белый кристаллический порошок
Содержание основного вещества, % 99
Цвет белый
И.К. соответствует структуре и стандарту
ТСХ одно пятно
Окисленный DTT 0,09 %
Точка плавления 42 С°
Потеря при сушке,% менее 0,5
Раствор (5 % в Н2О) прозрачный, бесцветный
Условия хранения 2 - 8 °С, сухое, темное место
Индекс риска (R) 22-36/37/38
Индекс безопасности (S) 26-36
Индекс опасности (H), 302-315-319-335
Индекс предупреждения (P) 261-264-270-271-280-301+312+330-302+352-304+340+312-305+351+338-332+313-362-403+233-501
Символы опасности Острая токсичность
1111GR005
хранение +2...+8°C, транспортировка +2...+8 °C
43 346
43 346 AMD
044149.25 gm
транспортировка +4°C
74 473
74 473 AMD
044149.1 kg
хранение +2...+8°C
По запросу
По запросу
GC205010
хранение +2...+8°C, транспортировка +2...+8 °C
1 953
1 953 AMD
3345.0500
500 г
14 519
14 519 AMD
Натуральный полисахарид, получаемый из красных водорослей (Rodophyta). Химически представляет собой сложный полимер, состоящий из агарозы и агаропектина. Является стабильной матрицей для экстракорпорального микроразмножения растений, культуры клеток и тканей.


сила геля > 1000 г/см²
мутность < 50 NTU
pH (1,5%) 5,00-7,50
влажность < 20%
зола < 3,5%
LC-10209.1
По запросу
По запросу
044047.100 gm
хранение +2...+8°C
131 057
131 057 AMD
044047.1 gm
2 158
2 158 AMD
PCT1802.5 gm
хранение +4°C, транспортировка +4°C
6 934
6 934 AMD
1668MG050
транспортировка +2...+8 °C
80 734
80 734 AMD
U87514.0025
25 г
19 240
19 240 AMD


CAS-No. 87-51-4
Химическая формула C₁₀H₉NO₂
Молярный вес, г/моль 175,19
Внешний вид беловатый или очень слабо розовый кристаллический порошок
Растворимость растворим в метаноле и ацетоне
Температура плавления, °С 165 - 169
Чистота (титрование), % не менее 98
Сульфаты в золе, % 0,1
Условия хранения комнатная температура
Индекс безопасности (S) 22-24/25
317918-100G
100 г
66 421
66 421 AMD


CAS-No. 86-87-3
Химическая формула C₁₂H₁₀O₂
Молекулярный вес 186,21
Содержание основного вещества , % не менее 90
Внешний вид порошок
Общее содержание примесей ~ 4% 2 - нафталинуксусной кислоты
Точка плавления, °C 127 - 133
Условия хранения при комнатной температуре
Индекс риска (R) 22-37/38-41
Индекс безопасности (S) 22-26-36
110621
1 мл
345 843
345 843 AMD
110611
1 мл
274 619
274 619 AMD
110211
1 мл
274 619
274 619 AMD
110221
1 мл
345 843
345 843 AMD
110321
1 мл
345 843
345 843 AMD
110311
1 мл
274 619
274 619 AMD
110411
1 мл
274 619
274 619 AMD
110521
1мл
345 843
345 843 AMD
110511
1 мл
274 619
274 619 AMD
112153
2.5 мл
34 296
34 296 AMD
110353
2,5 мл
34 296
34 296 AMD
110453
2,5 мл
34 296
34 296 AMD
GLINPK
633 004
633 004 AMD
GLIPH
208 437
208 437 AMD
GLIEC
265 793
265 793 AMD
LC-5938.1
28 850
28 850 AMD
LC-5938.5
19 751
19 751 AMD
1179GR500
29 439
29 439 AMD
3899.1000
670
670 AMD
3899.5000
3 237
3 237 AMD
3899.25000
16 623
16 623 AMD
506250.500 gm
3 675
3 675 AMD
506250.5 kg
21 636
21 636 AMD
TC1208. 500 gm
6 727
6 727 AMD
GC205003
8 372
8 372 AMD
3417.0500
500 г
3417.0500
500 г
По запросу
По запросу
3417.25000
25 кг
По запросу
По запросу
1240GR025
30 331
30 331 AMD
PCT1212.10 gm
транспортировка +2...+8 °C
2 427
2 427 AMD
P6280-25G
25 г
P6280-25G
25 г
242 865
242 865 AMD
P6280-100G
100 г
729 457
729 457 AMD
044086.25 gm
3 882
3 882 AMD
TC1282.5 gm
хранение +2...+8°C
236 251
236 251 AMD
G3664-500UN
500 единиц
хранение +2...+8°C
178 297
178 297 AMD
1111GR001
транспортировка +4°C
20 585
20 585 AMD
1111GR025
151 703
151 703 AMD
1111GR025
По запросу
По запросу
1111GR100
462 617
462 617 AMD
A01002A.100ml
хранение -20°C, транспортировка -20°C
65 496
65 496 AMD

См. также

Камеры, комнаты, стеллажи для роста (температура, влажность, свет)

Тестеры определения параметров почвы: электропроводность, рН, NPK

Горелки автоматические

Мешалки магнитные с нагревом

Лабораторная пластиковая посуда для работы с растениями

Фитогормоны и другие стимуляторы роста и адаптации растений. Обзор

Агары для микроклонирования

Среды для микроклонирования

Ваш заказ будет обработан
в ближайшее время.
Мы пришлем уведомление, как только все будет готово. Спасибо!